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1. Introinduction
Inductors aren’t just coils of wire – they are magnetic field domains in space defined by a loop of current,
or a superposition of loops of current. For the last year, I have been exploring exotic electromagnetic
field resonance geometries (LC circuits with unconventional topologies) in search of the equivalent of an
‘electromagnetic gearbox’ – a circuit component capable of shifting the frequency of an AC voltage input
while preserving its phase information. This exploration has led to the conceptualization of the Phasor Gate,
a device with the potential to redefine analog signal processing and unlock a novel computing paradigm.

Current computing technologies face fundamental limitations. Digital systems, while powerful, are hitting
barriers in energy efficiency and processing speed for certain complex tasks. Quantum computing, though
promising for specific problems, grapples with qubit instability, decoherence, and the probabilistic nature of
measurement. There is a clear need for alternative approaches that can handle complex information robustly
and efficiently. The Phasor Gate, and the Harmonic Computing paradigm it unlocks, offer such an alternative
by harnessing the rich, continuous nature of analog wave phenomena in a precisely controllable way.
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2. The Phasor Gate and the Bimodal Transformer
The “Phasor Gate” is a novel resonant electromagnetic device architected to perform arbitrary unitary trans-
formations on input signals composed of superposed frequencies. At its heart lies a “bimodal transformer”
featuring two counter-wound chiral (N, N-1) toroidal knot wires. This unique geometry, when coupled with
a network of dynamically tunable varactors (voltage-controlled capacitors), allows for the selective exci-
tation and manipulation of two orthogonal magnetic field modes: a Poloidal mode and a Toroidal mode.
These resonance modes are important, and they are capitalized because my use of them slightly differs from
convention. “Poloidal” refers to current traveling around both wires that add together constructively and
destructively such that the current appears to travel around the main loop of the torus, orbiting the center.
This generates the Poloidal magnetic field, which loops around the small radius of the torus, through the
center, orbiting the ring. The Toroidal mode is generated by a similar constructive and destructive interfer-
ence pattern, but one of the wires has the negative current of before. This makes the effective current travel
as a superposition of both wires “Toroidally,” around the small axis orbiting the ring, which generates a
Toroidal magnetic field orbiting the center, traveling on the inside of the torus. These resonance modes are
orthogonal and can therefore support any separate combination of field strengths they’re rated for, by the
coils’ superposition of currents.
3. Varactor Configuration

Now, place two tunable capacitors of the same capacitance across both pairs of wire from one to the
other. This capacitive coupling itentifies one of the modes, either Poloidal or Toroidal, in the inductor. Place
two new tunable capacitors equal in capacitance to each other, but distinct from the previous two, to form a
complete bipartite graph between the two terminals of one wire and the two of the other. These cross coupled
capacitors identify the other mode, Toroidal or Poloidal. We now have two tunable resonance geometries
that are orthogonal but can dynamically interact by shifting each mode’s resonant frequency independently.
4. The Information of Superpositions

An input signal, typically a superposition of two closely-spaced frequencies (e.g., f1, f2), is introduced
into one mode from a separate coil. By precisely controlling the varactors’ capacitances via an external
modulation signal (specifically, at the difference frequency fm = |f1 − f2| with a controllable “quasimodal
phase” Θ) between the Toroidal and Poloidal varactor control waveforms, the resonant characteristics of
these modes are dynamically altered. This parametric modulation facilitates coherent energy exchange and
phase shifts between the f1 and f2 components, and their transfer to the output mode. Let’s break this down.

Using this new circuit component, one can perform gate operations on “qubits” of data represented as
superpositions of waveforms. A single qubit stores the equivalent of two complex values whose distances
from zero, when added, equal one. This is the same as picking a value on the surface of a hypersphere
with radius one. Interestingly, complex numbers are also used frequently to analyze analog circuits with
alternating current and voltage waveforms. These waveforms are usually sinusoidal, and analog circuitry can
already introduce phase shifts, scale amplitudes, create superpositions of frequencies, and even selectively
filter a specific sinusoidal frequency to trigger events or be operated on (i.e. touch-tone telephone). The
only component that’s missing is phase-coherent frequency shifting, or “mode mixing”. If information from
one frequency can be shifted to another and retain all of its information, then each frequency in a harmonic
series becomes a basis vector that can be transformed onto or combined with any other. A sinusoidal voltage
waveform with a superposition of frequencies represents data with the same number of dimensions as twice
the number of frequencies present (think amplitude and phase). We only need two frequencies to store the
information of a single qubit.
5. Define a Reference Point

We can store the “ground” amplitude and phase for each frequency in a sawtooth wave, which is the
superposition of a harmonic series with the first harmonic’s period equal to the period of the sawtooth. I
call this sawtooth wave the “Modal Clock,” as it’s first harmonic is ideal for powering the varactors at the
right frequency to operate on an (N, N+1) pair of harmonics. So, not only is the modal clock able to define

2



Phasor Gate & Harmonic Computation Thomas Paul Choboter

phase 0 and amplitude 1 for all sinusoids in a harmonic series, in a network of Phasor Gates, it can also drive
all Phasor Gates to any combination of resonant frequencies harmonic with the clock for the Poloidal and
Toroidal modes, separately, and dynamically.
6. Pulling on Strings

The dynamic retuning of varactors is what powers a phasor gate. When energy is stored in a resonant
mode of the structure, and the corresponding capacitance is changed, the resonant frequency of the field
shifts but the energy inside the system remains there. It’s like pulling on a guitar string after you’ve already
played it. Repeat this detuning at the precise frequency of the modal clock, and oscillate the value of the
varactors such that the resonant frequency of the corresponding T or P mode shifts between the desired
operating harmonics at the extremes of its control waveform. Then, attach input and output coils. The input
coil is wound exclusively around the Poloidal mode, orbiting the center of the torus, and the output coil is
wound exclusively around the Toroidal mode, orbiting the ring. Surprisingly, the transfer function for this
system can be rigorously described (See Appendix B).

7. Engineering Unitary Transformations
The interaction within the Phasor Gate can be rigorously described. The input state, represented by com-
plex amplitudes (A1, A2) for frequencies f1, f2 in a separate input coil, is transformed into an output state
(B1, B2) in the separate output coil. This transformation is governed by a 2× 2 unitary matrix P (Θ, τ):(

B1

B2

)
= P (Θ, τ)

(
A1

A2

)
Through careful design (fixing specific operational parameters like modulation depth and interaction

time τ to achieve a constant rotation angle ϕ0), this matrix can be engineered to take the form of a rotation
by ϕ0 around an axis n̂(Θ) in the X-Y plane of the analogous Bloch sphere:

P (Θ) =

(
cos(ϕ0/2) −ie−iΘ sin(ϕ0/2)

−ieiΘ sin(ϕ0/2) cos(ϕ0/2)

)
Here, the quasimodal phase Θ directly controls the axis of rotation n̂(Θ) = (cosΘ, sinΘ, 0). By combining
this P (Θ) gate with external Z-rotations (phase adjustments to the input/output signal components), any
arbitrary SU(2) unitary operation can be synthesized. This forms the basis for a universal gate. The under-
lying system dynamics are described by a 4× 4 effective Hamiltonian for the coupled Poloidal and Toroidal
mode amplitudes, the exponentiation of which yields the specific elements of P (Θ, τ).

A full derivation of this transfer function, utilizing the Floquet method of analysis for a time-periodic
transfer function in a first-order ODE, is included in Appendix B: Derivation of the Phasor Gate Transfer
Function.

8. Proof-of-Concept Prototype
The theoretical framework and electromagnetic design principles for the Phasor Gate are now sufficiently
developed to proceed with the construction and testing of a proof-of-concept prototype. This prototype will
aim to demonstrate:

- Selective excitation of distinct Poloidal and Toroidal resonant modes.

- Dynamic tuning of these modes using varactors.

- Coherent frequency component mixing and phase shifting as predicted by the unitary transformation
model.

A detailed plan for the prototype design, fabrication, and testing is included in Appendix C: Proof-of-
Concept Construction and Testing Plan.
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Bill of Materials

# item part ID cost/unit units total link
1 Varactor ≈18 pF ALLECIN BB910 $0.3995 20 $7.99 amazon
2 Varactor ≈120 pF Microchip KVX2301 $6.70 20 $134.00 digikey
3 STM32 Microcontroller STM NUCLEO-H723ZG $30.17 1 $30.17 digikey
4 Carbonyl Iron Powder Gongyi City Meiqi I&T Co. $8.50/kg 1 kg $8.50 alibaba
5 Enameled Copper Wire 25AWG EMTEL $0.1719/ft 157 ft $26.99 amazon
6 Single Custom PCB Order PCBWay $7.25/in2 4 in2 $29.00 pcbway
7 Op Amp 300 MHz rating AD055ANZ $3.15 10 $31.50 mouser
8 Resin 3D Printer & Resin ≈0.05 mm tolerance N/A N/A N/A calpoly

Total: $268.15

9. Harmonic Computing and Advanced Analog Processing
The successful demonstration of the Phasor Gate will be a seminal step towards two revolutionary applica-
tion areas:
a) Harmonic Computing: This technology enables a new computing paradigm beyond classical and quan-
tum approaches.

- Qunits: Information is encoded in the stable amplitudes and phases of multiple superposed frequen-
cies within a single signal path, forming “qunits.” These qunits can inherently represent many more
states than a binary qubit (e.g., M frequencies could represent M basis states or be combined into
2M -like dimensional spaces).

- Rapid Computation: Complex operations are performed via analog wave interference and reso-
nance, potentially offering speed advantages for specific algorithms by leveraging the parallelism
inherent in wave dynamics.

- Direct Measurement: The amplitudes and phases of the frequency components comprising a qunit
are classical, continuous variables that can be measured directly using standard RF/microwave tech-
niques, bypassing the quantum measurement problem and decoherence limitations of many qubit
systems.

b) Next-Generation Analog Signal Processing: A network of Phasor Gates can form the backbone of
advanced analog signal processing systems.

- Real-Time Operation: Being an analog device, processing occurs at the speed of signal propagation,
enabling true real-time analysis and manipulation of complex waveforms.

- Ultra-Low Power: Operations are based on resonant energy transfer rather than power-hungry digital
switching, promising significant power savings for sensing, communication, and control systems.

- Applications: Envisioned uses include adaptive filters with unprecedented precision, cognitive radio,
dynamic spectrum management, biomedical sensor processing, and highly agile control systems for
robotics and aerospace.
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10. References and Literature Review
The principles underlying the Phasor Gate draw inspiration from and aim to extend several key areas of
research in electromagnetism, photonics, and nonlinear dynamics. While the proposed bimodal transformer
architecture and its application to Harmonic Computing represent a novel approach, they build upon es-
tablished concepts and address similar goals pursued through different means. The following references
provide context for these efforts.

Novel Electromagnetic Field Geometries and Topological Light: The exploration of electromagnetic
fields beyond simple plane waves, focusing on their geometric and topological properties, is a vibrant re-
search area. Rañada’s foundational work presented a topological theory where electromagnetic field lines
could form complex linked and knotted structures. More recently, comprehensive reviews like Arrayás,
Bouwmeester, and Trueba (2017) have detailed the rich physics of knots in electromagnetism. Building
on these ideas, Irvine and Bouwmeester (2008) analyzed specific knotted light solutions based on Hopf
fibrations, connecting them to Chandrasekhar-Kendall states and discussing their properties and potential
generation. Experimental and theoretical efforts to actively “tie knots in light fields,” such as those by Ke-
dia et al. (2013), demonstrate the increasing control over complex optical field topologies. The bimodal
transformer, with its counter-wound chiral knot wires, aims to harness such geometric principles within a
resonant circuit to define and manipulate distinct electromagnetic field modes, differing from free-space
beam shaping but sharing the spirit of exploiting field structure.

Frequency Manipulation and Resonant Systems: The Phasor Gate’s core function of controlled fre-
quency component transformation is deeply connected to objectives in RF/microwave engineering and pho-
tonics. The precise design and analysis of resonant structures, coupling mechanisms, and wave propagation
are fundamental to microwave engineering, as detailed in texts like Pozar (2005). In photonics, achieving
efficient coupling of energy between elements, such as between microresonators and dielectric waveguides
as analyzed by Yariv (2000), is critical for building complex systems; this principle is analogous to how
we might couple energy into and out of the distinct Poloidal and Toroidal modes of the Phasor Gate, es-
pecially via dedicated windings. While existing methods for frequency conversion and shifting in both
photonics (e.g., nonlinear optics, electro-optic modulators) and RF (e.g., mixers, phase-locked loops) are
well-established, the Phasor Gate proposes a novel analog approach based on the parametric modulation of
coupled electromagnetic field modes to achieve arbitrary unitary transformations on frequency superposi-
tions directly.

Integrable Systems and Soliton Dynamics: The conceptual underpinnings for robust wave-based in-
formation processing find parallels in the study of integrable systems and soliton theory. Solitons, as stable
solutions to certain nonlinear partial differential equations (e.g., KdV, sine-Gordon), maintain their iden-
tity through interactions, primarily experiencing phase shifts. This preservation of characteristics is highly
desirable for information-carrying entities. The inverse scattering method, often described as a “nonlinear
Fourier transform,” allows complex nonlinear dynamics to be understood in terms of these simpler soliton
components and their interactions. This deep link between wave behavior and spectral information is central
to the Phasor Gate’s operation. Furthermore, the rich connections between soliton theory and differential
geometry, including methods like Bäcklund and Darboux transformations for generating complex solutions,
inspire the exploration of “exotic” electromagnetic geometries like our bimodal transformer to achieve new
functionalities. The stability and coherent interaction of solitons offer a conceptual parallel to the “qunits”
envisioned for Harmonic Computing.
This brief review situates the Phasor Gate within established yet evolving research landscapes. We be-
lieve its unique approach offers a promising new avenue for both fundamental understanding and practical
application.
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11. Dymanet
The Phasor Gate concept stands at the confluence of novel electromagnetic theory and profound computa-
tional possibilities. Initial funding through the CIE and Noyce School of Applied Computing at Cal Poly
will enable the critical first step: building and validating a prototype that demonstrates the core principles
of this transformative technology. We are confident that this research will not only lead to significant aca-
demic and scientific contributions but also pave the way for groundbreaking commercial applications. We
envision a world where information and energy flows harmoniously from input to output, person to person,
and person to the natural world. We invite you to partner with us in bringing this vision to reality.

Help me start Dymanet – the world’s first harmonic computing company.
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Appendix A: Bimodal Transformer Parameterization Images

(1, 1) Knot (2, 1) Knot (3, 2) Knot (5, 4) Knot

(7, 6) Knot (10, 9) Knot (25, 24) Knot (50, 49) Knot

(1, 1) 2-Knot (2, 1) 2-Knot (3, 2) 2-Knot (7, 6) 2-Knot

(10, 9) 2-Knot (15, 14) 2-Knot (25, 24) 2-Knot (50, 49) 2-Knot

7



Phasor Gate & Harmonic Computation Thomas Paul Choboter

Appendix B: Derivation of the Phasor Gate Transfer Function

This appendix outlines the derivation of the 2× 2 unitary matrix P (Θ, τ) that describes the transformation
of an input signal state in the Poloidal (P) mode to an output signal state in the Toroidal (T) mode of the
Phasor Gate. The derivation relies on solving the coupled mode equations for the signal envelopes under
parametric modulation.

B.1. Defining the Modes and Resonances

Start by defining the Poloidal (xP ) and Toroidal (xT ) mode amplitudes as the quantities that oscillate. Both
xP and xT are voltage waveform frequency superpositions. Their uncoupled equations would be simple
harmonic oscillators.

ẍP (t) + ω2
P0xP (t) = 0

ẍT (t) + ω2
T0xT (t) = 0

We replace ωP0 and ωT0 with parametrically modulated resonant angular frequencies, arising from the
varactor networks.

ΩP (t) = ωc +∆ΩP sin(ωmt)

ΩT (t,Θ) = ωc +∆ΩT sin(ωmt+Θ)

where ωc = π(f1 + f2), ∆ΩP and ∆ΩT are amplitudes of frequency deviation (e.g., π|f1 − f2|), and
ωm = 2π|f1 − f2|. The oscillator equations become (neglecting damping for unitary evolution):

ẍP (t) + Ω2
P (t)xP (t) +KxT (t) = FinP (t) (Input to Poloidal mode)

ẍT (t) + Ω2
T (t)xT (t) +KxP (t) = 0 (Output from Toroidal mode)

Here K represents the physical coupling strength between the P and T modes (e.g., from the shared geometry
of the bimodal transformer itself, before considering varactor-induced couplings for f1 ↔ f2 mixing within
each mode via Ω(t)). The term FinP (t) represents the forcing of the Poloidal mode by the input voltage
superposition Vi = a sin(ω1t+ ϕ1) + b sin(ω2t+ ϕ2).

B.2. Transition to Slowly Varying Envelopes

We seek solutions near frequencies ω1 and ω2. We can express xP (t) and xT (t) using slowly varying
complex envelopes P1(t), P2(t), T1(t), T2(t):

xP (t) = Re{P1(t)e
jω1t + P2(t)e

jω2t}

xT (t) = Re{T1(t)e
jω1t + T2(t)e

jω2t}

(In Floquet analysis it is often standard to scale by 1/
√
2ωc, but this can be omitted – under the SVA approx-

imation, input sine waves become complex numbers). Apply the Slowly Varying Envelope Approximation
(SVEA): Ṗk is small, P̈k ≈ 0. So, ẍP (t) ≈ Re{−ω2

1P1e
jω1t + 2jω1Ṗ1e

jω1t − ω2
2P2e

jω2t + 2jω2Ṗ2e
jω2t}.
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B.3. Applying the Rotating Wave Approximation (RWA)

For the parametric terms, expand Ω2
k(t) ≈ ω2

c +2ωc∆Ωk sin(ωkmt+phasek). Substitute the envelope forms
into the coupled ODEs. For each equation (e.g., for xP ), collect terms oscillating at ejω1t and ejω2t sepa-
rately. This is important: The term 2ωc∆ΩP sin(ωmt)xP (t) will contain products like sin(ωmt)P2(t)e

jω2t.
Since ωm = ω1 − ω2 (assuming ω1 > ω2),

sin(ωmt)P2(t)e
jω2t =

ejωmt − e−jωmt

2j
P2(t)e

jω2t

The term ejωmtejω2t = ejω1t is resonant for the Ṗ1 equation. The term e−jωmtejω2t = ej(2ω2−ω1)t is non-
resonant under RWA if 2ω2−ω1 is far from ω1, ω2. This leads to terms like (2ωc∆ΩP )

1
2jP2 contributing to

the Ṗ1 equation. This also means the phasor gate is much more robust when processing adjacent harmonics
well above the first harmonic (ωm).

B.4. First-Order Coupled Equations for Envelopes

After applying SVEA and RWA, and collecting terms for each envelope, you will arrive at a system of
first-order ODEs. For example, the equation for Ṗ1 will look schematically like:

2jω1Ṗ1 + (ω2
c − ω2

1)P1 ≈ (coeff)P2 +KT1 + Fin,1

The term (ω2
c − ω2

1)P1 represents a detuning from a central frequency. In an appropriately chosen rotating
frame (or if ωc is defined as the average of ω1 and ω2 and these are the mode’s natural frequencies in that
frame), these detuning terms can be set to zero, simplifying the diagonal of Heff. The system takes the form
d
dtA = −iHeff(Θ)A + F′

in. Now, explicitly define the elements of Heff(Θ) based on the geometries of
interaction in the structure: * HP1P2(= G∗

P or iGP ) comes from 2ωc∆ΩP sin(ωmt) term coupling P2 →
P1. * HT1T2(= G∗

T or iGT0e
jΘ) comes from 2ωc∆ΩT sin(ωmt + Θ) term coupling T2 → T1. * HP1T1(=

κ′) comes from K/(2ω1), etc. If the modulation drive is sin(ωmt), the resulting coupling term in Heff is
imaginary (a σy-like drive). If it were cos(ωmt), it would be real (a σx-like drive). Based on ΩP (t) =
. . . sin(ωmt) and ΩT (t) = . . . sin(ωmt + Θ), the Hamiltonian should be (assuming GP ,GT0, κ

′ are real
strengths):

Heff(Θ) =


0 iGP κ′ 0

−iGP 0 0 κ′

κ′ 0 0 iGT0e
−jΘ

0 κ′ −iGT0e
jΘ 0


Again, the state of the signal in the P-mode is now represented by the complex amplitudes (P1(t), P2(t))

for frequencies ω1, ω2, and similarly (T1(t), T2(t)) for the T-mode. Based on the parametrically modulated
resonant frequencies ΩP (t) and ΩT (t,Θ), and inter-mode coupling K, and applying the Slowly Varying
Envelope Approximation (SVEA) and Rotating Wave Approximation (RWA) (justified by Floquet theory
principles for periodic modulation at ωm = |ω1 − ω2|), the system dynamics are described by:

d

dt
A(t) = −iHeff(Θ)A(t)

where A(t) = (P1(t), P2(t), T1(t), T2(t))
T .

For clarity and to illustrate the core Θ-dependent transformation, let’s make the simplifying assumption
that there is no direct f1 ↔ f2 mixing within the P-mode itself (GP = 0). This can safely be assumed if we
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are forcing a voltage onto the poloidal mode, which is very close to what we are doing (the input coil and
the Poloidal mode are magnetically coupled). The effective Hamiltonian Heff(Θ) is then:

Heff(Θ) =


0 0 κ′ 0
0 0 0 κ′

κ′ 0 0 GT0e
−jΘ

0 κ′ GT0e
jΘ 0


Here:

• κ′ is the real coupling strength between P-mode and T-mode components at the same frequency (e.g.,
P1 ↔ T1), derived from K and average frequencies (κ′ ≈ K/(2ωc)).

• GT0 is the real magnitude of the f1 ↔ f2 mixing strength within the T-mode, driven by the parametric
modulation of ΩT (t,Θ) (i.e., GT0 ∝ ∆ΩT , where ∆ΩT = π|f1−f2| is the amplitude of the resonant
frequency deviation).

• Θ is the quasimodal phase, controlling the phase of the f1 ↔ f2 mixing in the T-mode.

The input state is A(0) = (A1, A2, 0, 0)
T . The output T-mode state at time τ is (T1(τ), T2(τ))

T .

B.5. Solution via Laplace Transform

Let L{f(t)} = f̃(s). The system of ODEs becomes:

sP̃1(s)−A1 = −iκ′T̃1(s)

sP̃2(s)−A2 = −iκ′T̃2(s)

sT̃1(s) = −iκ′P̃1(s)− iGT0e
−jΘT̃2(s)

sT̃2(s) = −iκ′P̃2(s)− iGT0e
jΘT̃1(s)

Substituting P̃1(s) and P̃2(s) from the first two equations into the latter two, we obtain a system for T̃1(s)
and T̃2(s): (

s2+κ′2

s iGT0e
−jΘ

iGT0e
jΘ s2+κ′2

s

)(
T̃1(s)

T̃2(s)

)
= − iκ′

s

(
A1

A2

)

Let X(s) = s2+κ′2

s . The matrix on the left is
(

X(s) iGT0e
−jΘ

iGT0e
jΘ X(s)

)
. Its determinant is ∆sys(s) =

X(s)2 − (iGT0e
−jΘ)(iGT0e

jΘ) = X(s)2 + G2
T0. So, ∆sys(s) =

(
s2+κ′2

s

)2
+ G2

T0 =
(s2+κ′2)2+s2G2

T0
s2

.

The inverse is 1
∆sys(s)

(
X(s) −iGT0e

−jΘ

−iGT0e
jΘ X(s)

)
. Thus, the s-domain transformation M(s,Θ) such that(

T̃1(s)

T̃2(s)

)
= M(s,Θ)

(
A1

A2

)
is:

M(s,Θ) =
−iκ′s

(s2 + κ′2)2 + s2G2
T0

(
s2+κ′2

s −iGT0e
−jΘ

iGT0e
jΘ s2+κ′2

s

)

10
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Explicitly:

M11(s) =
−iκ′(s2 + κ′2)

(s2 + κ′2)2 + s2G2
T0

M12(s,Θ) =
−iκ′s(−iGT0e

−jΘ)

(s2 + κ′2)2 + s2G2
T0

=
−κ′GT0e

−jΘs

(s2 + κ′2)2 + s2G2
T0

M21(s,Θ) =
−iκ′s(iGT0e

jΘ)

(s2 + κ′2)2 + s2G2
T0

=
κ′GT0e

jΘs

(s2 + κ′2)2 + s2G2
T0

M22(s) = M11(s)

B.6. Characteristic Frequencies and Time-Domain Solution

The time-domain behavior P (Θ, τ) = L−1{M(s,Θ)}(τ) is determined by the poles of M(s,Θ), which are
the roots of the characteristic equation D(s) = (s2 + κ′2)2 + s2G2

T0 = 0.

s4 + (2κ′2 +G2
T0)s

2 + κ′4 = 0

This is a quadratic in s2. Let y = s2: y2 + (2κ′2 + G2
T0)y + κ′4 = 0. The roots for s2 are s2 =

−(2κ′2+G2
T0)±

√
(2κ′2+G2

T0)
2−4κ′4

2 =
−(2κ′2+G2

T0)±GT0

√
4κ′2+G2

T0
2 . Since 2κ′2 + G2

T0 > GT0

√
4κ′2 +G2

T0

(as (2κ′2 + G2
T0)

2 = 4κ′4 + 4κ′2G2
T0 + G4

T0 > G2
T0(4κ

′2 + G2
T0)), both roots for s2 are negative real

numbers. Let s2 = −ω2
a and s2 = −ω2

b , where ω2
a, ω

2
b > 0.

ω2
a,b =

(2κ′2 +G2
T0)∓GT0

√
4κ′2 +G2

T0

2

The four poles are s = ±iωa,±iωb. These purely imaginary poles ensure that the time-domain solutions
are oscillatory (linear combinations of cos(ωkτ) and sin(ωkτ)), corresponding to unitary evolution for a
lossless system.

B.7. The Unitary Transformation Matrix P (Θ, τ)

The inverse Laplace transforms of the elements Mij(s,Θ) will yield the elements Pij(Θ, τ) of our desired
2× 2 matrix.

• P11(τ) = P22(τ) = L−1{M11(s)}(τ). Since M11(s) =
−iκ′(s2+κ′2)

D(s) , and D(s) is an even function of
s, M11(s) is an odd function of s times −i. Its inverse Laplace transform will be a real, even function
of τ (a sum of cosines). Let P11(τ) = α(τ), where α(τ) is real.

• P12(τ,Θ) = e−jΘL−1{−κ′GT0s
D(s) }(τ). The term −κ′GT0s

D(s) is an odd function of s. Its inverse Laplace
transform will be a real, odd function of τ (a sum of sines) multiplied by −i (implicitly from a standard
sine transform definition or by analyzing residues). Let L−1{−κ′GT0s

D(s) }(τ) = −iσ(τ), where σ(τ) is
real. Then P12(τ,Θ) = −iσ(τ)e−jΘ.

• P21(τ,Θ) = ejΘL−1{κ′GT0s
D(s) }(τ) = iσ(τ)ejΘ.

Thus, the transformation matrix is:

P (Θ, τ) =

(
α(τ) −iσ(τ)e−jΘ

iσ(τ)ejΘ α(τ)

)
11
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For this matrix to be unitary, we require PP † = I, which implies |α(τ)|2 + | − iσ(τ)e−jΘ|2 = 1, so
α(τ)2 + σ(τ)2 = 1. This condition will naturally be satisfied by the functions derived from the inverse
Laplace transform of a system representing unitary evolution. We can therefore define an angle ϕ0(τ) such
that: α(τ) = cos(ϕ0(τ)/2) σ(τ) = sin(ϕ0(τ)/2)

The matrix P (Θ, τ) then becomes:

P (Θ, τ) =

(
cos(ϕ0(τ)/2) −ie−iΘ sin(ϕ0(τ)/2)

−iejΘ sin(ϕ0(τ)/2) cos(ϕ0(τ)/2)

)
This matrix represents a rotation by an angle ϕ0(τ) (which is a function of τ , κ′, and GT0 through

ωa, ωb) around an axis n̂(Θ) = (cosΘ, sinΘ, 0) in the X-Y plane of the Bloch sphere. The explicit forms
of cos(ϕ0(τ)/2) and sin(ϕ0(τ)/2) are specific combinations of cos(ωaτ), cos(ωbτ), (sin(ωaτ))/ωa, and
(sin(ωbτ))/ωb.

B.8. Conclusion

This derivation path, starting from the coupled mode equations and using the Laplace transform method for
the simplified case (GP = 0), rigorously establishes that the P-to-T transformation P (Θ, τ) takes the form of
a unitary SU(2) rotation. The quasimodal phase Θ controls the axis of this rotation in the X-Y plane, and the
interaction time τ (along with system constants κ′, GT0) controls the angle of rotation ϕ0(τ). This provides
a concrete mathematical basis for the Phasor Gate’s ability to perform arbitrary unitary operations when
combined with external Z-rotations, thus validating its potential for Harmonic Computing and advanced
analog signal processing. A more general derivation with GP ̸= 0 would follow similar principles but with
more complex algebra, still resulting in a 2× 2 unitary P (Θ, τ) whose elements depend on all parameters.

12
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Appendix C: Proof-of-Concept Construction and Testing Plan

C.1 Introduction and Timeline Overview

This appendix details the methodology for constructing and testing a proof-of-concept (PoC) Phasor Gate.
The objective is to experimentally validate the theoretical framework outlined in Section 7 and Appendix
B, demonstrating controllable unitary transformations on frequency-superimposed AC signals. The con-
struction will leverage components from the Bill of Materials (Section 8, Page 4) and facilities available
at Cal Poly. We are driven by the conviction that this prototype will provide compelling evidence for the
transformative potential of Harmonic Computing and advanced analog processing.

Estimated Summer Timeline:

• Weeks 1-2 (June 2025): Detailed electromagnetic (EM) simulation of the bimodal transformer ge-
ometry (using parameters like RP = 4 cm, RT = 2 cm, N = 30 turns for (30,29)-knots). Finalize
varactor network design, component selection, and PCB layout. Refine STM32 control signal strategy
for varactor biasing and modulation.

• Weeks 3-4 (June - July 2025): Fabrication of 3D-printed toroidal formers. Procurement of all elec-
tronic components (varactors, STM32, op-amps, passives, carbonyl iron powder, enameled wire).
PCB fabrication order.

• Weeks 5-6 (July 2025): Assembly of the bimodal transformer core, including chiral wire winding
and integration of magnetic material. Assembly of the control and measurement PCB.

• Weeks 7-8 (July - August 2025): Sub-system testing: varactor capacitance vs. voltage character-
ization, I/O coil impedance measurements, STM32 signal generation (DC biases, AC modulation
waveforms, input f1, f2 test signals), op-amp circuit verification.

• Weeks 9-10 (August 2025): Full system integration. Initial testing: DC response, static frequency re-
sponse of the unmodulated gate. Characterization of Poloidal and Toroidal mode resonant frequencies
and Q-factors across the varactor tuning range.

• Months 3-5 (August 2025 - October 2025): Dynamic testing: Implement parametric modulation.
Experimentally measure the transfer function P (Θ, τ) for steps of Θ = π/4 and varying τ . Validate
against the analytically derived transfer function. Test ϕ0 control via trapezoidal waveform shaping.

• Month 5+ (From October 2025): Iterate on prototype design for Q-factor enhancement and opti-
mized mode coupling. Begin exploration of networked Phasor Gates, investigate CNOT gate imple-
mentation, and design experiments to demonstrate analog qunit superposition. Initiate research into
miniaturization and integrated chip-scale designs.

13
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C.2 Detailed Prototype Construction Methodology

C.2.1 Bimodal Transformer Core Fabrication (Single Torus Design)

The heart of the Phasor Gate is the bimodal transformer. Our primary PoC approach focuses on the single-
torus design depicted in Section 1 (Page 1) and underpinning the derived Heff.

1. Toroidal Former Design: A toroidal former with nominal dimensions (e.g., Poloidal radius RP = 4
cm, Toroidal radius RT = 2 cm) will be designed using CAD software. Crucially, this former will
incorporate two distinct sets of precisely defined, counter-rotating helical grooves corresponding to
(N, N-1) toroidal knots (e.g., N=30 turns for (30,29)-knots). These grooves will guide the two chiral
windings. The torus will be designed to be hollow.

2. 3D Printing: The former will be fabricated in multiple pieces using a high-resolution resin 3D printer
(e.g., ≈ 0.05 mm tolerance, utilizing Cal Poly facilities). The design will allow for assembly into a
complete torus. Specifically, the torus will be conceptually “sliced” (e.g., two halves, plus a removable
section or lid) to allow access to its hollow interior.

3. Magnetic Core Material Integration: After initial assembly of the main toroidal structure (leaving
an opening), the hollow interior will be carefully filled with Carbonyl Iron Powder. This material
is chosen for its suitable RF magnetic properties to concentrate the fields and potentially enhance
inductance. The powder may be mixed with a non-conductive epoxy binder for stability, or packed
carefully.

4. Final Assembly: Once filled, the remaining 3D-printed pieces (e.g., the ring section sliced from the
top to expose the hollow inside) will be securely glued or fastened to complete the toroidal core.

C.2.2 Chiral and Input/Output Winding Implementation

1. Chiral Windings: Two continuous lengths of 25 AWG enameled copper wire will be meticulously
wound into the pre-designed grooves on the assembled toroidal core. One wire will follow the left-
handed (N,N-1) knot path, and the other will follow the right-handed (N,N-1) knot path, creating the
interleaved bimodal structure. Consistent tension will be maintained. The N=30 turns will provide
sufficient inductance and mode interaction. The four ends of these two wires (two per wire) will be
carefully prepared for connection to the varactor network.

2. Input Coil (Poloidal Drive): A separate coil will be wound toroidally around the major circumfer-
ence of the bimodal transformer core (potentially around an integrated bobbin or directly over the
primary chiral windings if shielded). This coil, when driven with an AC current, will primarily gen-
erate a Poloidal magnetic field (BP ) to excite the P-mode of the bimodal core. It will consist of
approximately 30 turns of enameled copper wire.

3. Output Coil (Toroidal Sense): Another separate coil will be wound poloidally around the minor
circumference of the bimodal transformer core (like a solenoidal winding segment). This coil will
primarily sense the Toroidal magnetic field (BT ) generated by the T-mode of the bimodal core. It will
also consist of approximately 30 turns.

4. Electrical Isolation: The input and output coils will be electrically isolated from the bimodal trans-
former’s chiral windings and varactor network, ensuring coupling is purely magnetic. Magnetic
shielding (using ferrite or other RF magnetic materials, possibly incorporating the carbonyl iron pow-
der more strategically) between the P and T mode regions within the core and around the I/O coils
will be explored to enhance mode purity, as per the “magnetic shells” concept.
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Alternative constructions
Two-Torus: Should the single-torus interleaved winding prove initially too complex for fabrication,

an alternative involves two separate 3D-printed tori – one with left-handed grooves, the other with right-
handed. Each chiral wire is wound on its respective torus. The tori are then mechanically linked (e.g., one
passing through the center of the other). The varactor network then bridges the ends of the wire on the first
torus to the ends of the wire on the second. The input coil would be wound on one torus, the output on the
other. While not identical to the primary theoretical model, this could allow for testing the varactor control
and P-T mode concepts with a different coupling topology.

Galinstan: Wires can be formed from negative channels in a precision 3D print. Using negative pres-
sure, a liquid conductor can be pumped through all windings, providing a liquid wire to form the inductive
elements of the system. While more costly, this would simplify the design, fabrication, and winding process
tremendously.

C.2.3 Varactor Network Design and Assembly

Two independent varactor networks will couple the two chiral windings. One network will primarily in-
fluence the Poloidal mode resonances (“Poloidal capacitors”), and the other the Toroidal mode resonances
(“Toroidal capacitors”).

1. Capacitance Range and Resolution: Each network aims for a dynamically controllable capacitance
from approximately 100 pF to 2000 pF. To achieve this range with fine resolution, we will employ a
parallel arrangement of multiple varactors.

2. “Tens/Ones Place” Control: We will use larger capacitance varactors (e.g., Microchip KVX2301,
≈ 120 pF nominal, from the Bill of Materials) for coarse, “tens-place” adjustment, and smaller capac-
itance varactors (e.g., BB910, ≈ 18 pF nominal) for fine, “ones-place” adjustment. Approximately
5-10 varactors of each type might be used per network, wired in parallel.

3. STM32 Control Signal Delivery: The STM32 microcontroller will generate separate DC bias volt-
ages for each varactor (or small groups of them if ganged for the binary counter system). These DC
biases will be summed with the AC modulation signal (fm = |f1 − f2| with phase Θ) also gener-
ated by the STM32 (via DAC or filtered PWM) and scaled by op-amps. Each of the four conceptual
varactors (connecting each red wire end to each blue wire end) will thus be realized by one of these
parallel banks, with two banks forming the Poloidal network and two forming the Toroidal network,
each independently controlled.

4. Mounting: Both surface-mount (BB910) and through-hole (KVX2301 if a through-hole variant is
sourced, or SMD equivalent) varactors will be mounted on the custom PCB, along with their biasing
resistors and RF isolation chokes.

C.2.4 Control and Measurement Circuitry

1. Signal Generation (Input Vi): The STM32 microcontroller will digitally synthesize the input wave-
form Vi = a sin(2πf1t+ ϕ1) + b sin(2πf2t+ ϕ2). Its DAC output will be appropriately filtered and
then scaled/buffered using an op-amp (e.g., AD055ANZ) to drive the Poloidal input coil.

2. Modulation Signal Generation: The STM32 will also generate the fm sinusoidal (or trapezoidal)
modulation signals for the varactor networks, including the crucial quasimodal phase offset Θ between
the signals for the Poloidal and Toroidal varactor sets.
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3. Output Measurement (Vo): The voltage output from the Toroidal sense coil will be captured. This
can be done in two ways:

- Directly using a high-bandwidth oscilloscope for initial characterization and visualization.

- For automated measurement and data logging, the signal can be appropriately scaled, filtered,
and then digitized using either an external ADC or a built-in ADC/digital codec interface on the
STM32 (if performance is adequate for the frequencies f1, f2). Digital signal processing (e.g.,
FFT) on the STM32 or a connected computer will then extract the amplitudes and phases of the
f1, f2 components.

C.3 Experimental Testing and Validation Plan

A phased approach will be used for testing:

1. Component and Sub-System Characterization (Weeks 7-8):

- Individual varactor C − V curves measured to confirm tuning range and select matched sets.

- Frequency response of the control signal paths (STM32 DAC/PWM → op-amp → varactor bias
input).

- Impedance vs. frequency measurement of the wound chiral coils and I/O coils (inductance,
self-resonant frequency).

2. Static and Dynamic Response of Assembled Gate (Weeks 9-10):

- DC Response: Not directly applicable for AC resonances, but check for shorts/opens.

- Static Resonances: With varactors set to fixed DC biases (no AC modulation), sweep input
frequency and measure transmission from input Poloidal coil to output Toroidal coil to identify
the resonant frequencies of the P and T modes. Map these resonant frequencies and their Q-
factors across the full DC tuning range of the varactor networks. This validates basic mode
excitation and tunability.

3. Verification of Unitary Transformation Control (Months 3-5):

- Apply the input signal Vi (superposition of f1, f2) to the Poloidal input coil.

- Activate the parametric modulation on the varactor networks at fm = |f1 − f2|.
- Measure the output Vo from the Toroidal coil. Decompose it into f1, f2 components to determine

their new amplitudes and phases (B1, B2).

- Systematically vary the quasimodal phase Θ in steps (e.g., π/4) while keeping interaction time
τ (and other parameters like ∆ΩT ,K effectively constant by fixing modulation amplitudes and
physical setup) and reconstruct the experimental P (Θ) matrix. Compare this with the analyti-
cally derived P (Θ, τ) from Appendix B.

- Test the control of the effective rotation angle ϕ0 by varying the shape of the fm modulation
waveform (trapezoidal, from near-square to near-triangle) applied to the varactors, for several
fixed values of Θ. Plot the resulting transfer functions (e.g., magnitude of B1/A1, B2/A1, etc.)
to quantify the change in transformation strength.
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C.4 Future Development and Vision (Beyond Month 5)

The successful PoC will pave the way for more advanced development:

1. Iterative Design for Performance Enhancement: Build multiple copies, systematically varying
design parameters (winding techniques, core materials/shells, varactor configurations) to enhance Q-
factors, optimize mode coupling κ′, and improve the purity of the P and T modes.

2. Networked Phasor Gates: Experiment with coupling multiple Phasor Gates. Investigate if a CNOT-
equivalent operation (a fundamental two-qubit gate) can be realized by networking two or more Phasor
Gates, where the state of one gate (e.g., presence/absence of a frequency, or its phase) controls the
unitary transformation performed by another. Achieving this would satisfy key DiVincenzo criteria
for a computing substrate.

3. Analog Qunit Superposition and Entanglement Analogues: Explore the creation of output states
from networked gates that exhibit characteristics analogous to quantum superposition and entangle-
ment – e.g., an output signal state whose frequency components cannot be described as a simple
product of the states of its constituent input qunits.

4. Miniaturization and Integration: Investigate scaling down the Phasor Gate. Design and simulate
through-hole or surface-mount components (e.g., aiming for < 1 cm3) using advanced stereolithog-
raphy or microscale 3D printing for the core, and integrated varactors/passive elements.

5. Harmonic Computer Architecture: Based on experimental results, begin designing chips, system
architectures, and algorithms tailored for the capabilities of Harmonic Computing with qunits.

This comprehensive plan, from fundamental construction to advanced exploration, aims to rigorously
establish the Phasor Gate as a viable and transformative technology. Thank you.
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